Doyle和Green(1994)的对抗性和仁慈性DEA

Doyle和Green(1994)的对抗性和仁慈性DEA

今天提出的是一个计算Doyle和Green1994提出的对抗性和仁慈性DEA模型的工具。

DEA 方法基于 自评思想 ,表现在权重由决策单元自身决定 ,最大化自身效率而尽量最小化他人效率.因此 ,此权重往往对其他决策单元的分配极为悬殊 ,对自己有利的指标赋权很大,对自己不利的指标赋权很小 ,甚至赋予零权重,这种权重下计算出的效率值并不能完全反映出 DMU的优劣。为了克服DEA方法的自评缺陷 ,研究人员提出了基于他评思想的 DEA衍生模型,其中最具代表性的是 DEA交叉效率方法 。

但是 ,传统交叉效率方法也存在缺陷:决策单元的最优权重可能不唯一 ,导致交叉效率可能会出现多解。为了解决这个弊端 ,Doyle和Green1994在交叉效率评价方法中引入不同的二次目标 ,进而提出了两阶段模型 ,即对抗性交叉效率模型和仁慈性交叉效率模型。当决策单元是敌对方关系时,则应用对抗性交叉效率模型;当决策单元是盟友关系时,则应用仁慈性交叉效率模型.

具体步骤如下:

第一步,求解CCR模型,计算出各个决策单元的自评效率值。

第二步,通过引入二次目标来确定交叉效率的权重 ,两种不同的二次目标代表了两种截然不同的策略。在保证当前DMU得到最大效率值的前提下,使其他DMU的效率值之和尽可能小,这是对抗性DEA,相反,使其他DMU的效率值之和尽可能大,这是仁慈性DEA。

对抗性模型如下:

Doyle和Green(1994)的对抗性和仁慈性DEA插图

仁慈性如下:

Doyle和Green(1994)的对抗性和仁慈性DEA插图1

使用模型3或模型4的最优权重得到交叉效率评价矩阵后,按列取平均值,即可以得到对应的对抗性或者仁慈性DEA的效率值。

下面是该工具得到的两种效率值

Doyle和Green(1994)的对抗性和仁慈性DEA插图2

下面是文献中提供的效率值:

Doyle和Green(1994)的对抗性和仁慈性DEA插图3

可以看到是完全一致的。

PS:这个模型,不同的求解器得到的结果会略有差异,权重差异最小,交叉效率评价矩阵差异略大,最后的平均值差异最大,不过一般也在0.01以内,DMU的排序会略有不同。

需要的同学可以联系微信 canglang12002

往期推荐:

一种新的两阶段网络DEA模型

适用于面板数据的动态StoNED模型计算工具

零和博弈SBM模型(ZSG-SBM)模型

三阶段动态网络DEA(DNSBM)模型的实现

计算相对资源承载力模型的工具

基于参数化的方向性距离函数(DDF)估算污染物影子价格的工具

基于非期望产出的RAM 碳环境效率模型

使用遗传算法或NSGA2算法解决多式联运问题

莫兰指数计算小工具

Panda_DEA增加至强有效前沿最近距离-MinDS模型

QLab增加耦合协调度模型

广义SBM模型的matlab代码

QLab1.4正式发布!增加全排列多边形图示指标法

大量数据时的Dagum基尼系数分解工具

Panda-DEA_1.0正式发布!

含有非期望产出的ZSG-DEA模型

两阶段网络DEA模型及其计算

Panda-DEA,一款新的DEA模型软件

DKM_1.3更新—CCM收敛交叉映射

DKM_1.2:两阶段嵌套泰尔指数工具

DKM_1.1–新增熵值法功能

数量经济学工具DKM_1.0

空间马尔科夫链工具

空间静态kernel核密度、空间动态kernel核密度工具更新

马尔科夫链之传统马尔可夫链

Dagum基尼系数分解工具更新

无条件、空间静态、空间动态kernel核密度工具

基于共同前沿下含非期望产出SBM模型的影子价格测算

基于非期望产出SBM模型的群组前沿和共同前沿的DEA效率

零和收益ZSG-DEA模型的求解程序

三阶嵌套泰尔指数计算工具

dagum基尼系数分解工具

《机构投资者抱团与股价崩盘风险》数据处理代码